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Introduction

hlmm is a python library for fitting heteroskedastic linear mixed models to genetic data.

A heteroskedastic linear model (hetlm.model) can model the effect
of a set of variables on the mean of a response (such as a continuous phenotype) and the
effect of a (potentially different) set of variables of the variability of the response

A hetlm.model models all effects on both the mean and variance of a response as fixed effects.
A heteroskedastic linear mixed model (hetlmm.model) adds modelling of random effects of a set of variables on the mean of the response.

Modelling random effects can make fitting a hetlmm.model very computationally demanding,
with the number of operations scaling with the cube of sample size.

The package hlmm provides the ability to fit a hetlmm.model
much more quickly when the number of variables with random effects is small compared
to the sample size. We use an algorithm whose operations scale in proportion to the sample
size multiplied by the number of random effects squared.

Main features

hetlm.model: define heteroskedastic linear models and find maximum likelihood estimates of parameters

hetlmm.model: define heteroskedastic linear mixed models and find maximum likelihood estimates of parameters

hlmm_chr.py (Documentation for hlmm_chr.py script): command line script that fits heteroskedastic linear models or
heteroskedastic linear mixed models to a contiguous segment of the genome.
The script takes bed formatted genotypes as input. and can incorporate
covariates for the fixed effects on the mean and/or variance.

fit_hlmm_model.py (Documentation for fit_hlmm_model.py script): command line script that fits a heteroskedastic linear model or a
heteroskedastic linear mixed model to a given response (phenotype), mean covariates,
variance covariates, and variables to model random effects for.

Quick install

We recommend installing using pip (https://pip.pypa.io/en/stable/).
At the command line, type


sudo pip install hlmm




Detailed Package Install Instructions

hlmm has the following dependencies:

python 2.7

Packages:


	numpy


	scipy


	pysnptools




We highly recommend using a python distribution such as Anaconda (https://store.continuum.io/cshop/anaconda/).
This will come with both numpy and scipy installed and can include an MKL-compiled distribution
for optimal speed.

To install from source, clone the git repository, and in the directory
containing the HLMM source code, at the shell type


sudo python setupy.py install




or, on the windows command prompt, type


python setup.py install




Running tests

The tests directory contains scripts for testing the computation of
the likelihoods, gradients, and maximum likelihood solutions for
both heteroskedastic linear models (test_hetlm.py) and
for heteroskedastic linear mixed models (test_hetlmm.py).
To run these tests, a further dependency is required: numdifftools.

To run the tests, first install hlmm. Change to the tests/ directory and at the shell type


python test_hetlm.py

python test_hetlmm.py




Both tests should run without any failures.





          

      

      

    

  

    
      
          
            
  
Tutorial

Tutorial on fitting heteroskedastic linear models (hetlm.model) to genetic data

To run this tutorial, you need plink installed and in your system path. (See http://zzz.bwh.harvard.edu/plink/download.shtml).

You also need R installed and in your system path. (See https://www.r-project.org/). Furthermore, you need to install the BEDMatrix package for R. To install this, type


install.packages('BEDMatrix')




at the command line prompt of an active R session.

In the installation folder for hlmm, there is an examples/ folder. Change to the examples/ folder.

In this folder, there is a bash script ‘simulate_genotypes.sh’. At the command line, type


bash simulate_genotypes.sh




This will produce two .bed files, ‘test.bed’ and ‘random.bed’, each containing genotypes for 100,000 individuals at 500 SNPs. We will simulate phenotypes from these genotypes and then fit models to the genotypes in test.bed, while modelling random effects for the genotypes in random.bed.

To simulate the test phenotype, at the command line, type


Rscript phenotype_simulation.R




The phenotype simulation corresponds to the Gamma model described in the paper (link). Briefly, we simulate a Gamma distributed phenotype where every variant from both test.bed and random.bed has an effect on the mean of the trait and also an effect on the variance of the trait through the mean-variance relation of the Gamma distribution.
The first variant in test.bed is also given a dispersion effect, an effect on the variance of the trait that cannot be explained by the general mean-variance relation of the Gamma distribution.

The phenotype is simulated so the heritability of the untransformed phenotype is 10%, i.e. the mean effects of the genetic variants in test.bed and random.bed explain 10% of the phenotypic variance.

The script performs an inverse-normal transformation of the phenotype before writing the phenotype to file as ‘test_phenotype.fam’.

To fit HLMs (hetlm.model) to the SNPs in test.bed, type


python ../bin/hlmm_chr.py test.bed 0 500 test_phenotype.fam test




This produces a file ‘test.models.gz’ containing the results of fitting HLMs (hetlm.model) to all the SNPs in test.bed. This is a tab separated file with a header that can be read by R by typing the command


results=read.table('test.models.gz',header=T,stringsAsFactors=F)




The columns in this output file are:


	SNP

	the SNP id from the .bim file



	n

	the sample size used for that SNP



	frequency

	the minor allele frequency of the SNP



	likelihood

	the maximum of the log-likelihood of the data given the model



	add

	the estimated additive effect of the SNP on the mean of the phenotype



	add_se

	the standard error of the estimated additive effect



	add_t

	the t-statistic for an additive effect of the SNP



	add_pval

	the -log10(p-value) for an additive effect of the SNP



	var

	the estimated log-linear variance effect of the SNP



	var_se

	the standard error of the estimated log-linear variance effect



	var_t

	the t-statistic for a log-linear variance effect of the SNP



	var_pval

	the -log10(p-value) for a log-linear variance effect of the SNP



	av_pval

	the -log10(p-value) from a combined (2 degree of freedom) test for additive and log-linear variance effects





You should find evidence for inflation of both additive and log-linear variance test statistics. Under the null, the squared t-statistic is asymptotically distribution as a Chi-Square distribution on 1 degree of freedom. The expected median of the squared statistics is therefore approximately 0.456.

In our simulation, the median of the squared additive t-statistics was 5.63, clearly showing a strong signal for additive effects of SNPs.

In our simulation, the median of the squared log-linear variance t-statistics was 0.6748393, also showing evidence for log-linear variance effects. (Statistical significance for a deviation from the null can be tested by the Kolmogorov-Smirnov test. In our simulation, this gave a p-value of 3x10-4, showing significant inflation of log-linear variance test statistics).

There is evidence for inflation of log-linear variance effects because a relationship between the additive and log-linear variance effects exists. This exists because of the mean-variance relation of the Gamma distribution combined with the effects of inverse-normal transformation. To visualise it, type


plot(results$add,results$var,xlab='additive effect',ylab='log-linear variance effect')




This should produce a plot that looks similar to this:

[image: _images/add_loglinear_relationship1.png]
This shows a clear relationship between the additive effect of a SNP and its log-linear variance effect remains after inverse-normal transformation.

By inferring the relationship between additive effects and log-linear variance effects, one can estimate dispersion effects, which are effects on phenotypic variance that cannot be explained by a general mean-variance relation.

We have prepared an R script that estimates dispersion effects and adds them to the results table. To estimate dispersion effects, type


source('estimate_dispersion_effects.R')




The first SNP should have a dispersion effect. To see if there is evidence for this, example ‘results[1,]’, in particular, whether ‘dispersion_pval’ is large for the first SNP.

The other SNPs should not have dispersion effects. To test this, type


ks.test(results$dispersion_t[-1]^2,'pchisq',1)




The p-value should not be significant. This is in contrast to the log-linear variance effect p-value, which should be significant due to the general mean-variance relation.

We have shown how to infer additive, log-linear variance, and dispersion effects using HLMs (hetlm.model). We now show how to do the same while taking advantage of the favourable properties of linear mixed models for genetic association testing.

We model random effects for the genotypes in random.bed. All of these SNPs have (relatively weak) additive effects on the trait, so modelling random effects should increase power.

To fit HLMMs (hetlmm.model)to all loci in test.bed, at the UNIX terminal, type


python ../bin/hlmm_chr.py test.bed 0 500 test_phenotype.fam test_random --random_gts random.bed




This will output ‘test_random.models.gz’ with the results of fitting the heteroskedastic linear mixed model to the SNPs in test.bed

It is much more computationally demanding to fit the mixed model, so this may take some time depending on your computer. Alternatively, one can fit the models for the first 10 SNPs:


python ../bin/hlmm_chr.py test.bed 0 10 test_phenotype.fam test_random --random_gts random.bed




However, to estimate dispersion effects, one needs to have estimated additive and log-linear variance effects for a large number of SNPs. If one has fit models to all 500 SNPs, then one can analyse the results with the same process used for the non-mixed model analysis outlined above. The association signal for both additive and dispersion effects should be increased relative to the non-mixed model version.





          

      

      

    

  

    
      
          
            
  
Documentation for ‘hetlm’ module

Documentation for the heteroskedastic linear model class.


	
class hetlm.model(y, X, V)

	Define a heteroskedastic linear model and calculate likelihood, gradients, and maximum likelihood estimates of
parameters.


	Parameters

	
	yarray

	1D array of phenotype observations



	Xarray

	Design matrix for the fixed mean effects.



	Varray

	Design matrix for the fixed variance effects.







	Returns

	
	modelhetlm.model

	heteroskedastic linear model class with input data









Methods







	alpha_mle(beta)

	Compute the maximum likelihood estimate of the fixed mean effect parameters, given particular fixed variance effect parameters and variance of random effects



	alpha_ols()

	Compute the ordinary least squares (OLS) estimate of the fixed mean effect parameters



	approx_beta_mle()

	Analytical approximation to the maximum likelihood estimate of the fixed variance effects



	grad_beta(beta, alpha)

	Compute the gradient with respect to the fixed variance effects of -2*L/n-log(2*pi), where L is the log-likelihood, the function that is minimized to find the MLE



	likelihood(beta, alpha[, negative])

	Compute the log of the likelihood, the likelihood at the maximum likelihood for the fixed mean effects



	optimize_model()

	Find the maximum likelihood estimate (MLE) of the parameters and their sampling distribution.












	alpha_cov

	


	beta_cov

	






	
alpha_mle(beta)

	Compute the maximum likelihood estimate of the fixed mean effect parameters, given
particular fixed variance effect parameters and variance of random effects


	Parameters

	
	betaarray

	value of fixed variance effects







	Returns

	
	alphaarray

	maximum likelihood estimate of alpha given beta














	
alpha_ols()

	Compute the ordinary least squares (OLS) estimate of the fixed mean effect parameters


	Returns

	
	alphaarray

	ordinary least-squares estimate of alpha














	
approx_beta_mle()

	Analytical approximation to the maximum likelihood estimate of the fixed variance effects


	Returns

	
	betaarray

	approximate MLE of beta














	
grad_beta(beta, alpha)

	Compute the gradient with respect to the fixed variance effects of -2*L/n-log(2*pi),
where L is the log-likelihood, the function that is minimized to find the MLE


	Parameters

	
	betaarray

	value of fixed variance effects



	alphaarray

	value of fixed mean effects to gradient for







	Returns

	
	grad_betaarray

	












	
likelihood(beta, alpha, negative=False)

	Compute the log of the likelihood, the likelihood at the maximum likelihood for the fixed mean effects


	Parameters

	
	alphaarray

	value of fixed mean effects to compute likelihood for



	betaarray

	value of fixed variance effects to compute likelihood for



	negativebool [https://docs.python.org/3/library/functions.html#bool]

	compute -2*L/n-log(2*pi), where L is the log-likelihood, the function that is minimized to find the MLE. Default is False.







	Returns

	
	Lfloat [https://docs.python.org/3/library/functions.html#float]

	log-likelihood of data given parameters.














	
optimize_model()

	Find the maximum likelihood estimate (MLE) of the parameters and their sampling distribution.


	Returns

	
	optimdict [https://docs.python.org/3/library/stdtypes.html#dict]

	keys: MLEs (‘alpha’, fixed mean effects; ‘beta’, fixed variance effects),
their standard errors (‘alpha_se’, ‘beta_se’),
covariance matrix for sampling distribution of parameter vectors (‘beta_cov’ and ‘alpha_cov’),
maximum likelihood (‘likelihood’), whether optimisation was successful (‘success’),





















          

      

      

    

  

    
      
          
            
  
Documentation for ‘hetlmm’ module

Documentation for the heteroskedastic linear mixed model class.


	
class hetlmm.model(y, X, V, G)

	Define a heteroskedastic linear mixed model and calculate likelihood, gradients, and maximum likelihood estimates of
parameters.


	Parameters

	
	yarray

	1D array of phenotype observations



	Xarray

	Design matrix for the fixed mean effects.



	Varray

	Design matrix for the fixed variance effects.



	Garray

	Design matrix for the random effects.







	Returns

	
	modelhetlmm.model

	heteroskedastic linear mixed model class with input data









Methods







	alpha_mle(beta, h2)

	Compute the maximum likelihood estimate of the fixed mean effect parameters, given particular fixed variance effect parameters and variance of random effects



	alpha_ols()

	Compute the ordinary least squares (OLS) estimate of the fixed mean effect parameters



	likelihood(beta, h2[, negative])

	Compute the log of the profile likelihood, the likelihood at the maximum likelihood for the fixed mean effects



	likelihood_and_gradient(beta, h2[, return_grad])

	Compute the function that is minimized to find the MLE, LL=-2*L/n-log(2*pi), where L is the log of the profile likelihood, the likelihood at the maximum for the fixed mean effects.



	optimize_model(h2[, SEs, dx])

	Find the maximum likelihood estimate (MLE) of the parameters and their sampling distribution.



	parameter_covariance(alpha, beta, h2[, dx])

	







	
alpha_mle(beta, h2)

	Compute the maximum likelihood estimate of the fixed mean effect parameters, given
particular fixed variance effect parameters and variance of random effects


	Parameters

	
	betaarray

	value of fixed variance effects



	h2: :class:`float`

	value of variance explained by random effects to compute likelihood for







	Returns

	
	alphaarray

	maximum likelihood estimate of alpha given beta and h2














	
alpha_ols()

	Compute the ordinary least squares (OLS) estimate of the fixed mean effect parameters


	Returns

	
	alphaarray

	ordinary least-squares estimate of alpha














	
likelihood(beta, h2, negative=False)

	Compute the log of the profile likelihood, the likelihood at the maximum likelihood for the fixed mean effects


	Parameters

	
	betaarray

	value of fixed variance effects to compute likelihood for



	h2: :class:`float`

	value of variance explained by random effects to compute likelihood for



	negativebool [https://docs.python.org/3/library/functions.html#bool]

	compute -2*L/n-log(2*pi), where L is the log-likelihood, the function that is minimized to find the MLE. Default is False.







	Returns

	
	Lfloat [https://docs.python.org/3/library/functions.html#float]

	log-likelihood of data given parameters.














	
likelihood_and_gradient(beta, h2, return_grad=True)

	Compute the function that is minimized to find the MLE, LL=-2*L/n-log(2*pi), where L is the log
of the profile likelihood, the likelihood at the maximum for the fixed mean effects.
Further, compute the gradient with respect to the fixed variance effects and the variance of the random effects.
This forms the basis of the function passed to L-BFGS-B in order to find the maximum likelihood parameter estimates.


	Parameters

	
	betaarray

	value of fixed variance effects to compute likelihood for



	h2: :class:`float`

	value of variance explained by random effects to compute likelihood for







	Returns

	
	[LL,gradient]list [https://docs.python.org/3/library/stdtypes.html#list]

	the value of the function to be minimized, LL, and its gradient. The gradient is a 1d array
that has the gradient with respect to beta first followed by the gradient with respect to h2.














	
optimize_model(h2, SEs=True, dx=1e-06)

	Find the maximum likelihood estimate (MLE) of the parameters and their sampling distribution.


	Parameters

	
	h2float [https://docs.python.org/3/library/functions.html#float]

	initial value of variance explained by random effects



	SEsbool [https://docs.python.org/3/library/functions.html#bool]

	whether to compute sampling distribution of parameter estimates. Default is True.



	dxfloat [https://docs.python.org/3/library/functions.html#float]

	the step size used to compute the Hessian for the computing the parameter sampling distribution







	Returns

	
	optimdict [https://docs.python.org/3/library/stdtypes.html#dict]

	keys: MLEs (‘alpha’, fixed mean effects; ‘beta’, fixed variance effects; ‘h2’, variance explained by random effects),
their standard errors (‘alpha_se’, ‘beta_se’, ‘h2_se’),
covariance matrix for sampling distribution of parameter vector (‘par_cov’, in order: alpha, beta, h2),
maximum likelihood (‘likelihood’), whether optimisation was successful (‘success’), warnings from L-BFGS-B optimisation (‘warnflag’).


















	
hetlmm.simulate(n, l, alpha, beta, h2)

	Simulate from a heteroskedastic linear mixed model given a set of parameters. This uses a singular
value decomposition to do the simulation quickly when l<<n.

The function simulates fixed and random effects design matrices of specified dimensions with independent Gaussian entries.


	Parameters

	
	nint [https://docs.python.org/3/library/functions.html#int]

	sample size



	lint [https://docs.python.org/3/library/functions.html#int]

	number of random effects



	alphaarray

	value of fixed mean effects



	betaarray

	value of fixed variance effects



	h2float [https://docs.python.org/3/library/functions.html#float]

	value of variance explained by random effects







	Returns

	
	modelhetlmm.model

	heteroskedastic linear mixed model with data simulated from given parameters

















          

      

      

    

  

    
      
          
            
  
Documentation for hlmm_chr.py script

This script fits heteroskedastic linear models (HLMs) (hetlm.model) or heteroskedastic linear mixed models (HLMMs) (hetlmm.model) to a sequence of genetic variants
contained in a .bed file. You need to specify the genotypes.bed file, which also has genotypes.bim and genotypes.fam in
the same directory, along with the start and end indices of segment you want the script to fit models to.

The script runs from start to end-1 inclusive, and the first SNP has index 0.
The script is designed to run on a chromosome segment to facilitate parallel computing on a cluster.

The phenotype file and covariate file formats are the same: plain text files with at least three columns. The first
column is family ID, and the second column is individual ID; subsequent columns are phenotype or covariate
observations. This is the same format used by GCTA and FaSTLMM.

If you specify a random_gts.bed file with the option –random_gts, the script will fit HLMMs (hetlmm.model),
modelling random effects for the SNPs in random_gts.bed. If no –random_gts are specified, then HLMs (hetlm.model)
are used, without random effects.

Minimally, the script will output a file outprefix.models.gz, which contains a table of the additive
and log-linear variance effects estimated for each variant specified.

If –random_gts are specified, the script will output an estimate of the variance of the random effects
in the null model in outprefix.null_h2.txt. –no_h2_estimate suppresses this output.

If covariates are also specified, it will output estimates of the covariate effects from the null model as
outprefix.null_mean_effects.txt and outprefix.null_variance_effects.txt. –no_covariate_estimates suppresses this output.

Arguments

Required positional arguments:


	genofile

	Path to genotypes in BED format



	start

	Index of SNP in genofile from which to start computing test stats



	end

	Index of SNP in genofile at which to finish computing test stats



	phenofile

	Location of the phenotype (response) file with format: FID, IID, y1, y2, …



	outprefix

	Location to output csv file with association statistics





Options:


	--mean_covar

	Location of mean covariate file (default no mean covariates)



	--var_covar

	Locaiton of variance covariate file (default no variance covariates)



	--fit_covariates

	Fit covariates for each locus. Default is to fit covariates for the null model and project out (mean) and rescale (variance)



	--random_gts

	Location of the BED file with the genotypes of the SNPs that random effects should be modelled for. If
random_gts are provided, HLMMs (hetlmm.model) are fit, rather than HLMs (hetlm.model).



	--h2_init

	Initial value for variance explained by random effects (default 0.05)



	--phen_index

	If the phenotype file contains multiple phenotypes, specify the phenotype to analyse. Default is first phenotype in file.
Index counts starting from 1, the first phenotype in the phenotye file.



	--min_maf

	Ignore SNPs with minor allele frequency below min_maf (default 5%)



	--missing_char

	Missing value string in phenotype file (default NA)



	--max_missing

	Ignore SNPs with greater % missing calls than max_missing (default 5%)



	--append

	Append results to existing output file with given outprefix (default to open new file and overwrite existing file with same name)



	--whole_chr

	Fit models to all variants in .bed genofile. Overrides default to model SNPs with indices from start to end-1.



	--no_covariate_estimates

	Suppress output of covariate effect estimates



	--no_h2_estimate

	Suppress output of h2 estimate





Example Usage

We recommend working through the tutorial (Tutorial) to learn how to use hlmm_chr.py. We provide some additional
examples of usage of the script here.

Minimal usage for fitting HLMs (hetlm.model):


python hlmm_chr.py genotypes.bed 0 500 phenotype.fam phenotype




This will fit heteroskedastic linear models to SNPs 0 to 499 in genotypes.bed using the first phenotype in phenotype.fam. It will output
the results of fitting the models to phenotype.models.gz. See Tutorial for a description of the columns
of phenotypes.models.gz.

Minimal usage for HLMMs (hetlmm.model):


python hlmm_chr.py genotypes.bed 0 500 phenotype.fam phenotype --random_gts random.bed




This will fit heteroskedastic linear mixed models to SNPs 0 to 499 in genotypes.bed using the first phenotype in phenotype.fam. It will output
the results of fitting the models to phenotype.models.gz. It will also output the estimate of h2, the variance
of the random effects, to phenotype.null_h2.txt, unless –no_h2_estimate is added to the command.

Fitting covariates:


python hlmm_chr.py genotypes.bed 0 500 phenotype.fam phenotype --mean_covar m_covariates.fam --var_covar v_covariates.fam




Before fitting locus specific models, the script will first fit a null model including the mean covariates in m_covariates.fam and the variance covariates in v_covariates.fam.
The script will output the null model estimates of the mean covariates in phenotype.null_mean_effects.txt and
null model estimates of the variance covariates in phenotypes.null_variance_effects.txt, unless –no_covariate_estimates is added to the command.
Unless –fit_covariates is added to the command, the phenotype is adjusted based on the null model estimates of the mean
covariate effects and variance covariate effects. The adjusted phenotype is used to fit locus specific models without
fitting the mean and variance covariates for each locus.





          

      

      

    

  

    
      
          
            
  
Documentation for fit_hlmm_model.py script

This script fits a heteroskedastic linear model (HLMs) (hetlm.model) or heteroskedastic linear mixed model (HLMMs) (hetlmm.model) to a given response (phenotype), mean covariates,
variance covariates, and variables to model random effects for.

The phenotype (response) file and covariate file formats are the same: plain text files with at least three columns. The first
column is family ID, and the second column is individual ID; subsequent columns are phenotype or covariate
observations. This is the same format used by GCTA and FaSTLMM.

If you specify a random_gts.bed file with the option –random_gts, the script will fit a HLMM (hetlmm.model),
modelling random effects for the SNPs in random_gts.bed. If no –random_gts are specified, then a HLM (hetlm.model)
is used, without random effects. If you add the flag –random_gts_txt, the program assumes that the file
specified for –random_gts is a text file formatted as: FID, IID, x1, x2, …

If mean and/or variance covariates are specified, the script will output two files: outprefix.mean_effects.txt, containing the estimated mean
effects and their standard errors; and outprefix.variance_effects.txt, containing the estimated log-linear
variance effects and their standard errors.

If –random_gts are specified, the script will output an estimate of the variance of the random effects
in outprefix.h2.txt. –no_h2_estimate suppresses this output.

Arguments

Required positional arguments:


	phenofile

	Location of the phenotype (response) file with format: FID, IID, y1, y2, …



	outprefix

	Location to output csv file with association statistics





Options:


	--mean_covar

	Location of mean covariate file (default no mean covariates)



	--var_covar

	Locaiton of variance covariate file (default no variance covariates)



	--random_gts

	Location of the BED file with the genotypes of the SNPs that random effects should be modelled for. If
random_gts are provided, HLMMs (hetlmm.model) are fit, rather than HLMs (hetlm.model).



	--random_gts_txt

	If this flag is specified, the program assumes the file specified in for –random_gts is formatted as a text file
with at least three columns: FID, IID, x1, x2, …



	--h2_init

	Initial value for variance explained by random effects (default 0.05)



	--phen_index

	If the phenotype file contains multiple phenotypes, specify the phenotype to analyse. Default is first phenotype in file.
Index counts starting from 1, the first phenotype in the phenotye file.



	--missing_char

	Missing value string in phenotype file (default NA)



	--no_h2_estimate

	Suppress output of h2 estimate





Example Usage

We recommend working through the tutorial (Tutorial) to learn how to use hlmm_chr.py. The usage of this script is similar, if
a little simpler.
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